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ABSTRACT: Using network pharmacology, we aimed to examine the underlying mechanisms
of FA in treating COVID-19. GeneCards and OMIM were queried for information on FA
treatment and COVID-19 targets. The PPI network was obtained using the software Cytoscape.
GO and KEGG enrichment analyses were used to identify biological pathways associated with
the target proteins. Using AutoDock Tools, simulate molecular docking and predict the extent
of FA binding to key targets. In in vitro cell experiments, A549 served as the object, various
concentrations of FA were used to prepare the cell model, and qRT-PCR was used to detect
the expression of TLR4, ACE, and EGFR genes. Network pharmacology screened 18 FA and
COVID-19 intersection targets, enriched 1594 GO entries, and targeted the regulation of the
inflammatory response. 29 KEGG pathways involving COVID-19, NF-B, and Toll-like receptor
signalling were significantly enriched. Cell experiments confirm that FA can effectively inhibit
the expression of TLR4, ACE, and EGFR. This study aims to shed new light on the search for
potential COVID-19 treatments.

1. INTRODUCTION

COVID-19 infection due to SARS-CoV-2, with fever and
cough common symptoms in patients with high transmissibility,
has a substantial negative impact on physical and mental health.
Critically unwell patients quickly develop ARDS, MODS, and
potentially life-threatening disorders (Taylor & Taylor, 2023).
Many people have lost their lives because of this, so there is an
urgent need to create and explore medications to treat COVID-
19 (Antonio et al., 2020). Despite the trend toward synthetic
chemistry for medication development, using plants to cure
and prevent disease is still very important (Veeresham, 2012).
In China, the therapeutic effect proves that the application
of traditional Chinese medicine, for example, Resina Ferulae,

Angelica sinensis (Oliv.) Diels, Chuanxiong Rhizoma, and
Cimicifugae Rhizoma are essential in preventing and treating
COVID-19 (Liu et al., 2019; Xing et al., 2020). Several
natural products, especially small molecule compounds from
those herbs, have already been described as active ingredients
and virtually tested with success against viruses (Apaydin et al.,
2021; Newman & Cragg, 2020). Hence, small-molecule drugs
have been pinned on high hopes since the beginning of the
COVID-19 epidemic (Ibitoye & Ajiboye, 2019). FA is a small
molecule compound with the biological activity of phenols,
which is widely present in natural plants. Many beneficial
properties such as antiviral, antioxidant, antibacterial, anti-
cancer, anti-diabetic, and other properties have aroused people’s
attention (Antonopoulou et al., 2021; Kaur et al., 2022; Nankar
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et al., 2017; G.W. Yang et al., 2015). FA has been demonstrated
to inhibit a number of viruses, including the H1N1 flu virus,
and also functions as an antiviral drug through several methods
of action, HIV, and respiratory syncytial virus (Ibitoye &
Ajiboye, 2018; Ling et al., 2015; Rehman et al., 2019; Sonar
et al., 2017). Besides, FA is crucial for the anti-inflammatory
actions (Ma et al., 2020; Mir et al., 2018; Wu et al., 2021; Yuan
et al., 2016), and can reduce acute lung injury brought on by
LPS by blocking the TLR4/NF-B signaling pathway (X. Wang
et al., 2017). However, there are currently no studies focused
on FA in treating COVID-19.

The investigation of disease and drug action mechanisms
using network pharmacology studies has grown in popularity
recently (Li et al., 2022). As a new promising approach
and tool, network pharmacology can comprehensively analyze
the interactions among network parameters and potential
drugs by establishing a component-target-pathway-disease net-
work (L. Wang et al., 2022). In addition, molecular docking
is frequently utilized to forecast how tiny compounds attach
to the corresponding target proteins or enzymes (Rudrapal et
al., 2022). Both techniques have been successfully applied in
drug discovery to treat diseases (Mu et al., 2021; Saikia &
Bordoloi, 2019). To predict potential targets and pathways of
FA in the treatment of COVID-19, this study used network
pharmacology and molecular docking, along with experimental
validation, to investigate possible mechanisms.

2. METHODS

2.1. PotenƟal FA and COVID-19 targets

The molecular structure of FA is obtained by searching for
Ferulic acid in PubChem (https://pubchem.ncbi.nlm.nih.gov/
) (Daina et al., 2017). Swiss Target Prediction (http://www.sw
isstargetprediction.ch/) (Keiser et al., 2007) and the ensemble
Approach (https://sea.bkslab.org/) (Rappaport et al., 2017)
have been used to predict the performance of potential target
genes of FA, delete duplicate target genes, and finally obtain the
target gene set of FA. Using the Genecards database (https://ww
w.genecards.org/) (Amberger et al., 2015) and OMIM database
(https://omim.org/) (Szklarczyk et al., 2019) by searching the
keywords ”SRAS-COV-2”, ”COVID-19”, then to establish the
data set COVID-19 goals, to obtain genes associated with
COVID-19.

2.2. IdenƟficaƟon of key targets for FA Treatment of COVID-19

By using VENNY2.1 (https://bioinfogp.cnb.csic.es/tools/ve
nny/index.html) used to find possible therapeutic targets for FA
treatment of COVID-19, intersect the target genes of FA with
the disease’s target genes and create a map. The FA target gene
sets and the COVID-19-related gene sets were intersected to
produce the linked gene sets.

2.3. PPI network

Gene sets connected to FA, and COVID-19 were added to
the STRING database (Zhou et al., 2019), to obtain connec-

tions between protein interactions for subsequent research. The
species was limited to Homo sapiens. Results are stored in TSV
format with a medium confidence level of 0.4. Cytoscape 3.7.2
software built-in betweenness network in CytoNca analysis, the
higher the score, the more involved biological functions, to
exclude the crucial COVID-19 targets for FA therapy, the more
significant.

2.4. Gene Ontology (GO and KEGG pathway enrichment analyses

Metascape platform (http://metascape.org/GP/index.html)
(Berman et al., 2003) was used to annotate and enrich the
target genes of FA and COVID-19 through the GO database,
including CC, MF, BP, and KEGG database. The main
biological processes and metabolic pathways of its therapeutic
effects were obtained, and the data results were saved.

2.5. Molecular docking

The PubChem database was used to find the molecular
structure of FA, and the ChemBioOffice 2016 program’s
ChemBio3D mapping module was used to determine FA’s
3D structure by force field optimization. Meanwhile, The
PDB database was used to find the target protein’s 3D
structure (Berman et al., 2003). PyMOL (Version 2.1.1)
is used for hydrogenation, dehydration, removal of solvent
molecules, elimination of undesirable ligands, and retention of
a single strand of the homodimer. The Autodock vina (Version
1.1.2)was used to calculate the root-mean-square deviation
(RMSD).Then Autodock (Version 4.2.6) software docked the
receptor protein with FAmolecule ligand, and PyMOLwas used
to visualise the outcomes.

2.6. Drugs and chemical reagents

FA was Purchased from Macklin Biochemical Technology
Co., Ltd Shanghai, ≥98 % HPLC grade. The solution was
dissolved using DMSO and stored in a -80 refrigerator, and the
CCK-8 kit was purchased from Topscience Co. Ltd. All rights
reserved Shanghai.

2.7. Cell culture

Human pulmonary carcinoma cells (A549) (Shanghai Yaji
Biotechnology Co., LTD). A549 cell cultures were kept in
an incubator at 37◦C with 5% CO2, 10% foetal bovine
serum, 2 mM glutamine, 100 U/mL penicillin, and 100 mg/ml
streptomycin.

2.8. Cell viability assay

Using the CCK-8 assay, cell viability was evaluated. The
cells of the logarithmic growth cycle were subjected to trypsin
digestion and centrifugation. The cell density was adjusted
to 2104 cells/mL, and 200 L of cell suspension per well was
inoculated into a 96-well plate. After the cells were attached to
the wall, FA was added in various concentrations, and 24 hours
were spent incubating the cells. An enzyme reader at 450 nm
measures the absorbance value (OD value). Cell survival rate
(%) = [A(drug)-A(blank)]/[A(control)-A(blank)] ×100%, The
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experiment was done three times with three compound wells in
each group.

2.9. Real-Ɵme quanƟtaƟve reverse transcripƟon PCR

Using a Tissue/cell RNA extraction Kit (Shanghai share-bio
Biotechnology Co., Ltd), total RNA was extracted, and Using
2*Universal SYBR Green qPCR Premix (Shanghai share-bio
Biotechnology Co., Ltd) for RT-qPCR. The primer sequences
are listed in Table 1, and the target gene’s amplification was
compared to the level of the endogenous control gene GAPDH.

Primers employed inthis investigation
Name Sequence 5’-3′

TLR4 F AGACCTGTCCCTGAACCCTAT
TLR4 R CGATGGACTTCTAAACCAGCCA
EGFR F CCCACTCATGCTCTACAACCC
EGFR R TCGCACTTCTTACACTTGCGG
ACE F CCACGTCCCGGAAATATGAAG
ACE R AGTCCCCTGCATCTACATAGC
MPO F GATGTGCAACAACAGACGCA
MPO R GAAGCCGTCCTCATACTCCG
F2 F GCAAGCACCAGGACTTCAAC
F2 R CCACGGCCTCCTCACAATAG
STAT3 F GCAAGCACCAGGACTTCAAC
STAT3 R CCACGGCCTCCTCACAATAG
GAPDH F CATGTTCGTCATGGGTGTGAACCA
GAPDH R ATGGCATGGACTGTGGTCATGAGT

3. RESULTS

3.1. IdenƟfy the Covid-19 and FA-related genes

Using the Genecard andOMIMdatabases, 467 COVID-19-
related genes were analysed and identified, and 227 FA-inferred
genes were identified using the Swiss Target Prediction and
Similarity Ensemble method. By identifying the point where
disease-related genes and compound target genes converge, we
were able tomap the interaction network using 18 FA (Figure 1).

3.2. Gene ontology analysis

Eighteen pertinent FA targets for COVID-19 treatment
were found through the intersection of FA and COVID-19
targets. We carried out a GO enrichment analysis of these
18 gene targets and screened 1594 biological process items,
comprising 1454 BP, 72 CC, and 68 MF entries, to clarify
the biological roles of these genes. The findings demonstrate
that treating COVID-19 with FA primarily involves related
biological processes. Regulation of the metabolism of reactive
oxygen species, production of interleukin-8, control of the
inflammatory response, control of blood coagulation, and
control of hemostasis are all positively regulated processes
(Figure 2A). The primary biological elements linked to FA
in the treatment of COVID-19 targets are the azurophil
granule, secretory granule, cytoplasmic vesicle, external side
of plasma membrane, endocytic vesicle, phagocytic vesicle,
primary lysosome, and vesicle lumen (Figure 2B).

Additionally, serine-type peptidase activity, serine hydrolase
activity, endopeptidase activity, serine-type endopeptidase
activity, pattern recognition receptor activity, protease binding,
lipopolysaccharide binding, heparin binding, and transcription
cofactor binding are among the major molecular functions of
FA in treating COVID-19 targets. (Figure 2C). We enhanced
the biological process findings from GO and the pathway
results from the Metascape database, and we found that the
primary physiological and pathological process of COVID-19
was inflammation response (Figure 2D). According to to GO
nomenclature, these target genes are essential for immunological
and inflammatory responses. In addition, as indicated in the
table, we identified 17 GO keywords from the enrichment
analysis findings related to inflammation, showing that these
target genes are crucial for the inflammatory response (Table 2).

3.3. KEGG pathway enrichment analysis

We performed a KEGG pathway analysis better to com-
prehend the potential processes underlying FA’s anti-COVID-
19 actions. The P value of less than 0.05 and an FDR
of less than 0.25 were deemed statistically significant by the
applicable objective. A total of 29 KEGG pathways were
significantly enriched, mainly involving COVID-19, PD-L1
expression, and PD-1 checkpoint pathway in cancer, Chagas
disease (American trypanosomiasis), Lipid and atherosclerosis,
Toxoplasmosis, Renin-angiotensin system, HIF-1 signaling
pathway, Measles, Bladder cancer, Hepatitis C (Figure 3A). The
most significant 10 KEGG pathways and corresponding genes
are shown in (Figure 3B). Meanwhile, based on the KEGG and
GO analysis findings, we constructed a core target relation graph
representing the correlation between GO and KEGG labelling
(Figure 3C). In (Figure 3D), The change in color from yellow
to red denotes the item’s significant rise and fall in P-value.
At the same time, the results also revealed that The biological
processes and signaling pathways associated with inflammation
and immunity were the most highly enriched in core target
genes.

3.4. PPI network and core targets

TheCytoscape 3.7.2 software now includes FA and COVID-
19 gene analysis. The core targets (betweenness greater than 10)
comprised six target genomes, and the related gene betweenness
results ranking in Table 3 were obtained through the built-in
betweenness analysis network in CytoNca. These analyses were
performed using the STRING database’s PPI network (Figure 4
).

3.5. Molecular Docking Analysis

Molecularly docking the top six targets (core targets) of
betweenness in the PPI network with FA, the receptors are
TLR4, MPO, EGFR, ACE, F2, STAT3, and the binding
strength and activity are evaluated based on the binding energy
and the volume of hydrogen bonds created. The binding activity
of the receptor protein and the tiny ligandmolecule FA are more
stable when the binding energy is lower and more hydrogen
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Figure 1. (A) Chemical composition of FA. (B) Identification of FA and COVID-19-associated genes.

Figure 2. The examination of the core targets’ enrichment. Top 10 of the analysis of the core targets by go enrichment BP (A), MF (B) and CC (C),
(D)The enrichment analysis of the core targets, Terms and pathway are ordered according to the P value.
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Table 1
Inflammatory-related GO terms enriched by the target genes.
ID Description P value Gene ID Count
GO:0050727 regulation of inflammatory response 2.23079E-

09
TLR4/EGFR/F2/TNFRSF1A/ELANE/ALOX5/TLR9/STAT38

GO:0002526 acute inflammatory response 5.19004E-
08

F3/F2/ELANE/STAT3/TRPV1 5

GO:0050729 positive regulation of inflammatory response 3.03378E-
07

TLR4/EGFR/TNFRSF1A/TLR9/STAT3 5

GO:1900015 regulation of cytokine production involved in inflammatory
response

4.28146E-
07

TLR4/F2/ALOX5/STAT3 4

GO:0002534 cytokine production is involved in inflammatory response 5.11252E-
07

TLR4/F2/ALOX5/STAT3 4

GO:0002532 production of molecular mediators involved in inflammatory
response

1.6059E-
06

TLR4/F2/ALOX5/STAT3 4

GO:0050728 negative regulation of inflammatory response 3.08441E-
05

F2/TNFRSF1A/ELANE/ALOX5 4

GO:0002523 leukocyte migration involved in inflammatory response 0.000102359 ELANE/ALOX5 2
GO:1900017 positive regulation of cytokine production involved in

inflammatory response
0.000214955 TLR4/STAT3 2

GO:0150076 neuroinflammatory response 0.002411334 EGFR/TRPV1 2
GO:0090594 inflammatory response to wounding 0.014221514 ALOX5 1
GO:1900225 regulation of NLRP3 inflammasome complex assembly 0.014221514 TLR4 1
GO:0044546 NLRP3 inflammasome complex assembly 0.01610322 TLR4 1
GO:0002438 acute inflammatory response to antigenic stimulus 0.022662508 ELANE 1
GO:1900016 negative regulation of cytokine production involved in

inflammatory response
0.032886583 F2 1

GO:0002269 leukocyte activation is involved in the inflammatory response 0.046665802 TRPV1 1
GO:0002437 inflammatory response to antigenic stimulus 0.05935894 ELANE 1

Figure 3. KEGG analysis of related genes. (A) The results of the ten top-ranking pathways. (B) The link between genes and pathways. (C) Association
and P values (D) of GO and KEGG enrichment results.
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Figure 4. Detailing the intersection association of target-disease-function-pathway in FA to treat COVID-19, an integrated network map from key
targets was plotted.

Table 2
Results ranked by Betweenness
Ranked Gene name Betweenness
1 TLR4 92.61905
2 MPO 32.833332
3 EGFR 26.116667
4 ACE 20.635714
5 F2 13.116667
6 STAT3 10.119047
7 MMP1 4.169048
8 F3 3.0190477
9 REN 2.0666666
10 TNFRSF1A 1.4523809
11 NFE2L2 0.95238096
12 ELANE 0.9
13 TLR9 0
14 TRPV1 0
15 MIF 0
16 ALOX5 0
17 AHR 0
18 TTR 0

bonds are present. Table 4 of the docking results revealed that
FA’s binding energy to the core target was less than or equal to
5 kcal/mol, indicating that the binding is meaningful (Barros
et al., 2023; Gilson et al., 1997; Marcelino et al., 2022))and a
docking is considered reliable if the RMSD of all ligand atoms is
less than 2.0 Trott andOlson (2010).We selected the interaction
of the binding conformation of hydrogen bond number≥2 for

Table 3
Molecular docking score and RMSD
Target Drug Docking score (kcal/mol) RMSD
TLR4 (PDB ID 2Z63) -5.51 0.69
MPO (PDB ID 5MFA) -5.96 1.37
EGFR (PDB ID 1A2V) FA -5.23 1.64
ACE (PDB ID 1O8A) -5.37 1.42
F2 (PDB ID 1A2C) -5.87 1.61
STAT3 (PDB ID 5AX3) -5.49 1.96

visualization (Figure 5). The docking scores were recorded in
Table 3.

3.6. FA inhibited the expression of TLR4, ACE and EGFR

The activity of A549 cells after FA treatment was firstly
measured by CCK-8 assay to exclude false positive results caused
by the cytotoxicity of FA. No cytotoxic effect on cell viability
was evident with increased FA concentration (Figure 6A).
Consequently, FA in non-toxic concentrations (10, 20, and 40
µM) were used for the following experiments. Research has
demonstrated that COVID-19 infection can lead to a deadly
inflammatory response in the host’s body. To investigate the
impact of FA on the main target during this inflammatory state,
we examined the expression of core target mRNA in A549
cells when exposed to TNF-α stimulation. As depicted in
(Figure 6B-G), TLR4, ACE, EGFR, F2, MPO, and STAT3
expression increased significantly under TNF-α stimulation.
However, FA effectively inhibited this increase in a dose-
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Figure 5. Structural interactions of FA and key target receptors. (A) TLR4 protein - FA; (B) F2 protein - FA; (C) MPO protein - FA; (D) EGFR
protein - FA; (E) ACE protein - FA; (F) STAT3 protein - FA.

dependent manner. These findings align with the results of our
molecular docking study. These findings suggest that FA may
play a key role in controlling immune responses by influencing
the expression of these central targets.

4. DISCUSSION

Through network pharmacological methods and molecular
docking analysis, we screened the existing database and
discovered 227 potential targets of FA. The results showed
the pharmacological targets, functions, and signalling pathways
of FA’s anti-COVID-19 effects. First, all relevant genetic
targets for FA therapy for COVID-19 were identified by
bioinformatics assays, including F3, ACE, TLR4, EGFR,
F2, TNFRSF1A, ELANE, NFE2L2, ALOX5, MPO, TLR9,
STAT3, TTR, REN, MMP1, AHR, TRPV1. TLR4 is a cell-
indicated immune receptor that binds particularly strongly to
that spike protein of SARS-CoV-2 and activates TLR4 signal
transduction, thereby increasing the expression of ACE2, high

expression of ACE2 is beneficial to the infection of SARS-
CoV-2 (Aboudounya & Heads, 2021), leading to ARDS and
inflammation. According to the existing literature reports, The
activation and abnormal expression of TLR4 may be linked
to excessive inflammation in COVID-19 patients, so TLR4
antagonists may help treat COVID-19 (Bank et al., 2021;
Tatematsu et al., 2016). MPO, a crucial mediator of the
innate immune system, can mediate the proteolytic cleavage of
alpha-1-microglobulin to form t-alpha-1-microglobulin, which
potently inhibits oxidation of low-density lipoprotein particles
and limits vascular damage., inhibits MPO to reduce the
damage of inflammation to body tissues (Davies & Hawkins,
2020; Lazarević-Pasti et al., 2015; Rehring et al., 2021). In
COVID-19 patients, overexpression of EGFR has been found
to lead to pulmonary fibrosis, as high expression of EGFR
will abnormally activate the NF-κB and STAT3 signaling
pathways, thus exacerbating the inflammatory response of
patients (Cuza et al., 2022; Xu et al., 2021). ACE Catalyzing
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Figure 6. (A) FA reduced the expression of target genes in A549 cells. A FA was incubated for 24 hours, and a CCK-8 assay was used to detect it. A549
cells were treated with DMSO or 10,20, 40 µM FA, and 6 h later. As indicated, cells were treated with either TNF-α (10 ng/ml) or PBS for 30 min.
mRNAs expression for the (B), TLR4, (C), ACE, (D), EGFR, (E), F2, (F), MPO and (G), STAT3 was analyzed quantitatively by real-time PCR. Data
were expressed as mean ± sd from three independent experiments.
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the conversion of angiotensin I into the physiologically active
peptide angiotensin II, the regulation of the homologous ACE2
gene may be involved in the progression of several human
coronavirus-induced diseases, including SARS-CoV and SARS-
CoV-2 (Scialo et al., 2020).

Moreover, ACE2 has been proposed as a coronavirus host
cell receptor. Hence, for the therapy of COVID-19, it is
possible to decrease viral infection and pathogenic inflammation
by reducing ACE (Junior et al., 2021; Khurana & Goswami,
2022; G. Yang et al., 2020). The transcription regulator
STAT3 is essential for managing inflammation and immune
function. Pro-inflammatory cytokines and chemokines are
released when STAT3 is overactive and unbalanced during
COVID-19 infection. By inhibiting STAT3 function, COVID-
19 can be treated (Matsuyama et al., 2020).

The results of the GO and KEGG analyses of target
gene enrichment are intriguing. Initially, it was discovered
that the target gene is enriched in the cell’s immunity
and defense mechanisms, including positive regulation of
interleukin-8 production, regulation of the metabolic process
for reactive oxygen species, and regulation of the inflammatory
response. Therefore, we speculate that this may directly
affect the outcome of viral infection. At the same time,
The HIF-1 signaling pathway, the NF-B signaling pathway,
and the Toll-like receptor signaling pathway are primarily
involved in COVID-19. Also, the molecular docking results
show that FA can bind to the COVID-19 core targets,
confirming FA’s potential and pharmacological action in the
treatment of COVID-19. Characterized by inhibition of
cell necrosis and inflammation-related, we speculate that FA
treatment for COVID-19 reduces cytokine expression levels and
alleviates excessive inflammation in COVID-19 by inhibiting
activation of inflammatory pathways while improving the body’s
immunity.

5. CONCLUSION

Network pharmacology and bioinformatics gene analysis
support our findings that FA participates in antiviral, anti-
inflammatory, and immunomodulatory actions via various
biological processes and cell signalling pathways. More research
and experimental validation are required, but COVID-19
therapy may also be an option.
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