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ABSTRACT: Thirteen compounds (1− 13) were isolated and identified during phytochemical
analysis of the leaves and stem bark of Guibourtia ehie (A. Chev) J. Leonard. Spectroscopic
and spectrometric methods and the comparison of their results with those given in the literature
were used to ascertain their structures. Furthermore, the acetylation of 3,3′-di-O-methylellagic
acid 4′-O-β-D-xylopyranoside (2) afforded a new derivative 3,3′-di-O-methylellagic acid 4′-O-
β-D-(4,2′′,4′′-triacetyl)-xylopyranoside (2a). Extracts, fractions, and isolated compounds were
assessed for their antioxidant, urease, and α-glucosidase inhibitory activities. Compound 1
demonstrated potent antioxidant activity in the DPPH with an IC50 value of 36.4 ± 0.2 µM,
while rhaponticin (3), 2,6-dimethoxybenzoquinone (4), and taraxerol (6) exhibited a strong α-
glucosidase inhibitory activity with the IC50 values of 35.5 ± 0.1, 25.5 ± 0.2 and 43.4 ± 0.3
µM, respectively. The present study enriches the chemistry ofGuiboutia ehie and provides further
evidence on its bioactive constituents, which might help in the development of hypoglycaemic
drugs.

1. INTRODUCTION

The Cameroonian flora represents a significant reservoir of
medicinal plants that are used by the local population as first aid
in the management of several illnesses like malaria or diabetes
due to their cheapness and their availability (Happi et al., 2020;
Mbougnia et al., 2021; Wouamba et al., 2020). Diabetes
mellitus is a common chronic metabolic disease and remains
a global health problem in almost all countries worldwide.
Its relationship with oxidative stress is well established and
documented (Kasali et al., 2021). Moreover, infection with
Helicobacter pylori causes stomach inflammation, ulcers, adeno-
carcinoma, and lymphoma (Kumar et al., 2021), which affect an
essential ratio of the population worldwide. Inhibiting urease
activity has been proposed as a viable strategy for eradicating
Helicobacter pylori from the human body (Amin et al., 2013).
Our recent research on Cameroonian medicinal plants and

their endophytes contributed to identifying lead bioactive
compounds with antimicrobial, antiparasitic, antioxidant and
cytotoxic potencies (Happi et al., 2015; Jouwa et al., 2020;
Makong et al., 2019; Tabekoueng et al., 2020). As a continuity
of our research works on Cameroonian medicinal plants, the
plant Guibourtia ehie has been investigated for its antioxidant
compounds and urease and α-glucosidase inhibitors. Indeed,
“Bubinga”, the common name of the Guibourtia of the forests
of Central Africa, also nicknamed “the forest giant”, is a fetish
or sacred tree for the pygmies (Bahuchet, 1985). Guibourtia
ehie (A. Chev) J. Leonard, also known as Copaifera ehie A.
Chev is present in Cameroon, Ivory Coast, Gabon, Ghana,
Liberia and Nigeria. Various organs of the plant (bark, roots,
and fruits) are used for various purposes (Adjanohoun, 1984).
The stem bark extract is used to manage gastrointestinal related
clinical problems in African ethnomedicine. The decoctions
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of a mixture of stem bark of G. ehie and Tetrapleura tetraptera
are drunk to treat stomach ulcers in Ghana, while the bark
and leaves of G. ehie are introduced in the decoction of
plant mixtures by the local population in South Cameroon
for the treatment of hypertension and its related symptoms
as well as sexual infections. Phytochemical screening of the
plant species highlighted the presence of saponins, flavonoids,
alkaloids, sterols, triterpenes, pro-anthocyanidins having good
antioxidant, antibacterial and α-glucosidase inhibitory activi-
ties (Abdoul-Latif-Fatouma et al., 2017).

2. EXPERIMENTAL

2.1. General instrumentaƟon

The detailed information about the general instrumentation
was given in the supplementary information (Appendix A).

2.2. Plant material

The stem bark and leaves of Guibourtia ehie (A. Chev)
J. Leonard were collected in December 2018 at Dibombari
locality (GPS coordinates: Latitude 4◦12′00′′N, Longitude
9◦39′00′′E, Elevation: 14 m), Littoral Region, Cameroon. The
identification of the plant was made by Mr. Victor Nana based
on morphological comparison of its leaves and branches with
the previous plant material in the database of the National
Herbarium of Cameroon, where a specimen was kept under the
voucher number 43216 HNC.

2.3. ExtracƟon and isolaƟon

MeOH extraction of G. ehie stem bark (3.16 kg) and leaves
(860.0 g) yielded brown viscous extract (80.2 g) and green
viscous extract (30.4 g), respectively, at room temperature for
48 h, after which the filtrates were concentrated under reduced
pressure. Each extract (~5 g) was kept for biological assays,
and the remaining crude extract was independently subjected
to silica gel column chromatography with a gradient of EtOAc
in n-hexane, followed by a gradient of methanol in EtOAc.
The stem bark extract (75.2 g) was fractionated over silica
gel to obtain seven main fractions labelled from S1 to S7.
The fraction S1 (n-hexane-EtOAc, 37:3) gave a total of 104
subfractions and afforded three pure compounds identified as
a mixture of β-sitosterol (11) and stigmasterol (12) (5.6 mg)
(from subfractions 5-24) and friedelan-3-one (7) (5.7 mg)
(from subfractions 86-97). By applying the same method,
the second fraction S2 (n-hexane−EtOAc 17:3) gave a total
of 94 subfractions of 200 mL each from which taraxerol (6)
(6.3 mg) (from subfractions 13-21) and lupeol (5) (8.3 mg)
(from subfractions 57-68) have precipitated as white powders.
Furthermore, 2,6-dimethoxylbenzoquinone (4) (4.2 mg) was
obtained from the third fraction S3 (n-hexane−EtOAc, 4:1)
while the last fraction S7 (EtOAc) was further purified on silica
gel column chromatography to yield 113 subfractions from
which stigmasterol-3-O-β-D-glucopyranoside (13) (10.2 mg)
(from subfractions 1-18) and ellagic acid (1) (7.2 mg) (from
subfractions 67-82) as white amorphous and yellowish powders,

respectively.
The leaves extract (25.4 g) was fractionated over a silica

gel column using the gradient hexane−DCM−EtOAc−MeOH,
resulting in six series. The third series, S3 (hexane−DCM, 1:4),
was a combination of 108 fractions (100mL, each) and afforded
lanosterol (8) (3.4 mg) (from fractions 34-41). The fourth
series S4 (DCM−EtOAc, 1:1) resulted from the combination
of 142 fractions and after purification process yield scopoletin
(9) (3.4 mg) (from fractions 5-12), pilloin (10) (2.8 mg) (from
fractions 34-53) and 3,3′-di-O-methylellagic acid 4′-O-β-D-
xylopyranoside (2) (24.5 mg) (from fractions 122-135) while
the last series S6 (EtOAc−MeOH, 49:1) with a total of 68
fractions yielded rhaponticin (3) (6.4 mg) (from fractions 34-
41).

2.4. AcetylaƟon of compound 2

3,3′-di-O-methylellagic acid 4′-O-β-D-xylopyranoside (2)
(15.0 mg) was dissolved in pyridine (1.0 mL), and 1.0 mL of
acetic anhydride was added. After 10 hours under agitation at
room temperature, the reaction was quenched with water, and
the medium was partitioned between CH2Cl2 and H2O. The
organic layer was reduced to dryness using a rotavapor to afford
an oily extract that was further purified over silica gel eluting
with hexane-AcOEt (1:19) to yield 3,3′-di-O-methylellagic acid
4′-O-β-D-(4,2′′,4′′-triacetyl)-xylopyranoside (2a) (8.0 mg) as a
yellow powder.

2.5. Spectroscopic data of reported compound 2a

3,3′-di-O-methylellagic acid 4′-O-β-D-(4,2′′,4′′-triacetyl)-
xylopyranoside (2a): C27H24O15, Yellow powder (MeOH);
HR-ESI-MS (m/z): 611.1007 [M+Na]+(calcd for
C27H24O15Na+, 611.1013); [α]25D = +20 (c = 1.0, CHCl3);
UV (MeOH) λmax (log e) 260 (3.43), 292 (3.51), 358 (3.40)
nm; IR (KBr) υmax 3500 (OH), 1748 (C=O), 1630 (C=C),
1062 (C-O) cm−1; 1H NMR (600 MHz, CDCl3) δ: 7.90
(1H, s, H-5), 7.80 (1H, s, H-5′), 5.26 (1H, d, J = 5.2 Hz,
H-1′′), 5.24 (2H, m, H-5′′), 5.02 (1H, dd, J = 6.9, 9.7 Hz,
H-2′′), 4.40 (3H, s, 3′-OCH3), 4.26 (1H, dd, J = 4.5, 9.9 Hz,
H-3′′), 4.20 (3H, s, 3-OCH3), 3.62 (1H, dd, J = 6.2, 10.1 Hz,
H-4′′), 2.11 (3H, s, 4′′-OCOCH3), 2.10 (6H, s, 4-OCOCH3

and 2′′-OCOCH3); 13C-NMR (150 MHz, CDCl3) δ: 169.9
(4′′-OCOCH3), 169.8 (2′′-OCOCH3), 169.4 (4-OCOCH3),
158.3 (C-7), 158.1 (C-7′), 150.8 (C-4, C-4′), 143.5 (C-3),
141.5 (C-2), 139.8 (C-2′), 138.9 (C-3′), 115.5 (C-1), 114.1
(C-5′), 113.2 (C-6), 112.4 (C-6′), 111.9 (C-1′), 111.7 (C-5),
99.5 (C-1′′), 69.9 (C-3′′), 69.6 (C-2′′), 68.1 (C-4′′), 62.2
(3-OCH3), 62.2 (3′-OCH3), 61.9 (C-5′′), 20.8 (4-OCOCH3

and 2′′-OCOCH3), 20.7 (4′′-OCOCH3).

2.6. DPPH radical scavenging acƟvity

As described by Gülcin et al. (2005), the free radi-
cal scavenging activity was evaluated using 1,1-diphenyl-2-
picrylhydrazil (DPPH). The detailed procedures were given in
the supplementary information (Appendix A).
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2.7. Urease inhibiƟon assay

The urease inhibition assay was measured using the method
described by (Lodhi et al., 2014). The detailed procedures were
given in the supplementary information (Appendix A).

2.8. Alpha-glucosidase inhibiƟon assay

The alpha-glucosidase inhibition assay was measured using
the method described by Atsumi et al. (1990) and Kurihara
et al. (1994). The detailed procedures were given in the
supplementary information (Appendix A).

3. RESULTS AND DISCUSSION

3.1. Phytochemical study

Using purification techniques, the chemical study of the
methanolic leaves and stem bark extracts of Guibourtia ehie
led to the isolation of thirteen compounds (Figure 1). Their
structures were established as ellagic acid (1) (Nkainsa et al.,
2020), 3,3′-di-O-methylellagic acid 4′-O-β-D-xylopyranoside
(2) (Moharram et al., 2003; Ngoumfo et al., 2008), rhapon-
ticin (3) (Park et al., 2018), 2,6-dimethoxylbenzoquinone
(4) (Harasawa & Tagashira, 1994), lupeol (5) (Ahmed,
2019), taraxerol (6) (Midori et al., 1999), friedelan-3-one
(7) (Xie et al., 2013), lanosterol (8) (Ishii et al., 2014),
scopoletin (9) (Napiroon et al., 2018), pilloin (10) (Tsai et
al., 2018) and three common steroids β-sitosterol (Ododo et
al., 2016), stigmasterol (Ibrahim et al., 2015) and its glucoside
stigmasterol-3-O-β-D-glucopyranoside (Faizi et al., 2001) by
comparing their 1D-NMR and ESI- or EI-MS with those
reported in the literature (Figure 1). The isolated steroids
were directly identified by comparison of their Rf on TLC
profiles with those of the reference compounds available in the
laboratory.

Table 1
IC50 values of antioxidant, urease and α-glucosidase inhibition
assays

Samples
IC50 ± SEM (µM)

DPPH
assay

Urease
inhibitory

α-Glucosidase
inhibitory

SBE 61.2 ± 0.1 81.3 ± 0.7 14.1 ± 0.5
LE 63.4 ± 0.1 80.7 ± 0.4 18.2 ± 0.8
FLE 1 75.5 ± 0.1 25.2 ± 0.8 12.4 ± 0.7
FLE 2 89.1 ± 0.1 86.3 ± 0.1 10.3 ± 0.2
1 36.4 ± 0.2 n.t n.t
2 - - 84.3 ± 0.2
2a - 75.3 ± 0.5 75.2 ± 0.9
3 85.3 ± 0.4 89.2 ± 0.2 35.5 ± 0.1
4 - - 25.5 ± 0.2
6 89.2 ± 0.5 - 43.4 ± 0.3
7 - - 89.1 ± 0.1
BHA 44.2 ± 0.2 - -
Thiourea - 22.4 ± 0.2 -
DNJ - - 3.9 ± 0.7

SBE: Stem bark extract; LE: Leaves extract; FLE 1: the first fraction leaves extract (DCM/AcOEt 1:1);
FLE 2: the second fraction leaves extract (AcOEt); DNJ: 1-deoxynojirimycin, n.t: not tested.

In looking for significant activity, 3′-di-O-methylellagic acid
4′-O-β-D-xylopyranoside (2) obtained in sufficient amount
was chemically modified by acetylation reaction to afford
compound 2a, a yellow powder with an optical rotation
α25

D = +20 (c = 1.0, CHCl3). It’s (+)-HR-ESI-MS
showed the sodium adduct ion [M+Na]+ at m/z 611.1007
(calcd. for C27H24O15Na+, 611.1013) consistent with the
molecular formula C27H24O15 suggesting the acetylation of
three hydroxyl groups of compound 2 (Figure 1). This
observation was further confirmed with the 1HNMR spectrum
of 2a (Table 1 , Figure 3S Appendix A ), which showed
in the upfield region, the signals of three additional methyl
groups deshielded by an ester carbonyl at δ2.11 (3H, s, 4′′-
COCH3), 2.10 (3H, s, 2′′-COCH3) and 2.10 (3H, s, 4-
COCH3) compared to that of 2 (Figure 3S Appendix A ).
In addition, the 13C, Dept-135 and Dept-90 NMR spectra
(Figure 4S-6S Appendix A , Table 1) displayed extra resonances,
including signals of three carbonyl groups at δ 169.4, 169.8
and 169.9. The careful analysis of the HSQC spectrum
(Figure 8S Appendix A ) allowed us to establish the correlations
between protons at δ 5.02 (1H, dd, J = 6.9, 9.7 Hz, H-
2′′), δ 3.62 (1H, dd, J = 6.2, 10.1 Hz, H-4′′) and the
carbonyl groups at δ 169.8 (2′′-COCH3) and δ169.9 (4′′-
COCH3), respectively. These observations suggested that the
initial hydroxyl groups at C-2′′ and C-4′′ in the sugar moiety
of 2 have been acetylated in 2a. The third acetoxy group
was attached to hydroxyl at C-4 based on HMBC cross-peaks
between the aromatic proton at δ 7.90 (1H, s, H-5) with
the ester carbonyl group at δ 169.4 (4-COCH3) in long-
range correlation (Figure 9S Appendix A ). Thus, the structure
of compound 2a was determined as 3,3′-di-O-methylellagic
acid 4′-O-β-D-(4,2′′,4′′-triacetyl)-xylopyranoside as shown in
(Figure 1).

3.2. AnƟoxidant property

The extracts, fractions and the major compounds obtained
were submitted for antioxidant activity in the DPPH (Table 1).
Briefly, the stem bark and leaves extracts and leaf fractions
showed weak activity with effectiveness in the range of
IC50 value from 61.2 to 89.1 µM. As expected for the
phenolic constituents, ellagic acid (1) displayed a strong
potency with an IC50 value of 36.42 µM more active than
the standard butylhydroxyanisole (BHA) (IC50 = 44.2 ± 0.2
µM) while its derivatives 3,3′-di-O-methylellagic acid 4′-O-
β-D-xylopyranoside (2) and 3,3′-di-O-methylellagic acid 4′-
O-β-D-(4,2′′,4′′-triacetyl)-xylopyranoside (2a) were not active.
Another phenolic rhaponticin (3), was slightly active (IC50

= 85.3 ± 0.4 µM) whereas 2,6-dimethoxylbenzoquinone (4)
was not active. Taking together, we can partially conclude
based on our results that the potency in antioxidant activity for
the phenolic compounds, especially the ellagic acid derivatives,
increases with the availability of the phenolic hydroxyl groups
in their core structures. The more the phenolic compound
is substituted on its hydroxyl functions, the less it is active.
Previous investigations reported that ellagic acid (1) demon-
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Figure 1. Chemical structures of compounds 1− 13 isolated from G. ehie

strated a high DPPH radical scavenging, lipid peroxidation
inhibition, and a high reactivity towards HO• , oxygen, and
nitrogen species. Furthermore, it significantly increases the
activities of SOD (superoxide dismutase), CAT (catalase) and
GPX (glutathione peroxidase) in V79-4 cells (Galano et al.,
2014; Han et al., 2006; Priyadarsini et al., 2002; Tošovi &
Bren, 2020). Similarly, rhaponticin (3) significantly reduced
oxidative stress by decreasing the level of malondialdehyde and
increasing the activity of SOD, CAT and GPX in diabetic
rats (Shi et al., 2020). Lastly, the triterpene taraxerone (6)
exhibited a weak activity with an IC50 of 89.2 ± 0.5 µM.

3.3. Urease inhibiƟon acƟvity

The evaluation of extracts, fractions and pure compounds
for their urease inhibitory activity showed that except the
DCM/AcOEt (1:1) fraction of leaves extract which had an
activity close to the reference thiourea 25.2± 0.8 µM and 22.4
± 0.2 µM, respectively, the stem bark and leaves crude extracts,
compounds 3,3′-di-O-methylellagic acid 4′-O-β-D-(4,2′′,4′′-
triacetyl)-xylopyranoside (2a) and rhaponticin (3) were slightly
active with IC50 values in the range of 75.3 to 89.2 µM.
The other tested compounds 2,6-dimethoxylbenzoquinone (4),
lupeol (5), friedelan-3-one (7) and lanosterol (8), were inactive
(Table 1). Our result can be supported by the literature,
which reports that the urease inhibition ability of medical
plants is attributed to their large classes of phytoconstituents,
including phenolic compounds, saponins, cardiac glycosides
and gallocatechin derivatives (Modolo et al., 2015)

3.4. Alpha-Glucosidase inhibiƟon acƟvity

In the α-glucosidase inhibitory assay, the crude extracts and
leaves fractions of G. ehie exhibited promising results with
intense activities in the range of 10.3 to 18.2 µM, which were
less active than the reference (1-deoxynojirimycin, IC50 = 3.9±
0.7µM). 2,6-dimethoxylbenzoquinone (4) was the most potent
among the tested compounds, followed by rhaponticin (3) and
taraxerol (6) with IC50 values of 25.5 ± 0.2, 35.5 ± 0.1 and
43.4 ± 0.3 µM, respectively. Several compounds from various
classes have been reported in the literature as alpha-glucosidase
inhibitors. For instance, Atta-Ur-Rahman et al. (2008) isolated
cichoridiol, a taraxane-type triterpenoid close to taraxerl (6),
displaying a significant alpha-glucosidase inhibitory activity.
These results suggested that the extracts of G. ehie might be of
great importance in the formulation of ameliorated traditional
medicine for the treatment of diabetes and other diseases related
to the inhibition of α-glucosidase, but further analyses are
necessary to support this partial conclusion. Furthermore,
rhaponticin (3), 2,6-dimethoxybenzoquinone (4), and taraxerol
(6) deserve further investigations for the development of new
antidiabetic drugs.

3.5. Chemotaxonomic significance

This study led to the isolation of thirteen compounds,
including ellagic acid (1) and its derivative 3,3′-di-O-
methylellagic acid 4′-O-β-D-xylopyranoside (2), rhaponticin
(3), 2,6-dimethoxybenzoquinone (4), lupeol (5), taraxerol (6),
friedelan-3-one (7), lanosterol (8), scopoletin (9), pilloin (10),
as well as the common steroids β-sitosterol (11), stigmasterol
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(12) and stigmasterol-3-O-β-D-glucopyranoside (13). The
isolation of these secondary metabolites is not uncommon since
the report on previous phytochemical investigations of some
Guibourtia species like Guibourtia ehie, G. coleosperma, and G.
tesmanii demonstrated the presence of tannins, triterpenoids,
saponins and sterols (Dushimemaria et al., 2017). All of these
compounds have been reported from G. ehie for the first time,
allowing us to gain a better understanding of this species’
chemistry. The stilbene glycoside rhaponticin (3) was reported
from G. tessmannii (Kathryn et al., 2005). Compound 3
was also isolated from a Leguminosae plant Trigonella foenum-
graecum (Idris et al., 2021), indicating a close relationship
between genus Guibourtia and Trigonella; however, further
investigation must be done to support these observations.
Lanosterol (8) was identified using gas chromatography-mass
spectrometry from G. colosperma (Preez et al., 2020). Lupeol
(5), taraxerol (6) and friedelan-3-one (7) are isolated for the
first time from the Guibourtia genus but were previously
detected in other genera from Leguminosae (Fabaceae)
family. Indeed, lupeol (5) was reported from Dalbergia
hainanensis (Zhang et al., 2003), Cassia abbreviate (Mutasa
& Kahn, 1995), Caesalpinia sappan (Oswal & Garg, 1993),
Caesalpinia pulcherrima (Chiang et al., 2003) while friedelan-
3-one (7) was reported from Caesalpinia digyna (Srinivasan et
al., 2011), Pterocarpus santalinoides (Ichiko et al., 2016), and
Pterocarpus erinaceus (Ouedraogo et al., 2011). Taraxerol (6)
was isolated from Dalbergia hainanensis (Zhang et al., 2003)
and D. spinosa (Anjaneyulu et al., 2005). These findings
indicated the close phylogenetic relationship between the
genera Guibourtia, Cassia, Milletia, Dalbergia and Caesalpinia
belonging to the same plant family. Finally, 3,3’-Di-O-
methylellagicacid-4’-O-β-D-xylopyranoside (2), scopoletin (9)
and 2,6-dimethoxybenzoquinone (4) can also be found in some
species across the Leguminosae (Fabaceae) family. Therefore,
compound 2 was reported from Acacia farnesiana (Hussein et
al., 2002), while compound 4 was previously obtained from
Senna alata (synonym of Cassia alata) (Chimi et al., 2021),
and compound 9 was already obtained from twigs and leaves of
Caesalpinia spinosa (He et al., 2015). Additionally, pilloin (10)
was identified by GS-MS from Dalbergia melanoxylon (Yin et
al., 2018). Hence, this evidence further supports the taxonomy
of the plant species G. ehie and enriches its chemistry.

4. CONCLUDING REMARKS

The chemical investigation of leaves and stem bark of the
Cameroonian medicinal plant Guibourtia ehie afforded thirteen
compounds including ten compounds 1− 10 reported for the
first time from the species G. ehie while five including 3,3′-
di-O-methyl ellagic acid 4′-O-β-D-xylopyranoside (2), 2,6-
dimethoxylbenzoquinone (4), lupeol (5), taraxerol (6), and
friedelan-3-one (7) were previously-reported from the genus
Guibourtia. In addition to enhancing the chemistry of G.
ehie, the present works revealed the pharmacological importance
of chemical constituents of the plant. Indeed, some exciting
activities have been observed for the extracts, fractions and

pure compounds. The most important was the significant α-
glucosidase inhibitory activity of extracts, fractions, as well as
rhaponticin (3), 2,6-dimethoxybenzoquinone (4), and taraxerol
(6), which deserve further attention in pharmacological investi-
gations for the development of new potent hypoglycemic drugs.
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