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ABSTRACT: There is a very close association between humans’ beings and the enormous wealth
of plants on this green planet. Amid the large floral diversity, numerous plants have been used for
exclusive purposes, most notably the food. Though many staple crop plants and vegetables are
rich sources of carbohydrates, proteins, and fats to meet hunger and require nourishment, they
invariably lack some of the essential minerals and vitamins vital for the ideal growth of a human
being. Globally, a large portion of the populace is facing ‘hidden hunger’ attributable to the
deficit of certain minerals and vitamins in their routine diet because most of the staple food and
fodder are deficient in any specific essential nutrients and vitamins. To meet this problem, people
have used many approaches and developed new methods to improve staple crops. Biofortification
is one such method which is used extensively by the researchers. In this attempt, various tactics
of biofortification have been reviewed. The review also conferred that besides the attainment of
a great success in many staple crops there are some limitation exist in the applicability of this
advancement.

1. INTRODUCTION

Predominantly, food crops exhibit deficiency in terms of their
nutritional properties. It is tough to discover any such crop
with enough nutrients to be used as an ideal and complete
diet. Hence, the researchers have implemented their ideas
to better the food crops through ‘biofortification’ (Bouis &
Welch, 2010). In this approach, the nutrient concentration
of food crops is augmented. In the past, it was achieved
using conventional plant breeding, afterwards with improved
agronomic practices and now through modern biotechnological
methods without forfeiting any of the valuable characteristics
of the preferred crops that are appreciated by consumers and
farmers (Valença et al., 2017).

Though much work has been done in the past, and many
attempts are still continuous, this particular aspect of crop
improvement needs regular updates to a greater extent. It is
a known fact that a considerable proportion of the human
populace is suffering from ‘Hidden Hunger”. Hence this review
is an effort in this direction that would enrich understanding the
various causes and impacts of undernourishment and strategies
used for biofortification to solve the problem.

2. METHODOLOGY

The present appraisal has been compiled with the help of
various relevant works of literature that are liberally available
on the internet via NCBI, Pub Med, Web of Science, Google
Scholar, Scopus, etc.

3. MAJOR DEFICIENCIES IN PLANTS

Earlier, it was reported that the primary crops are usually
deficient in Iron (Fe), calcium (Ca), vitamin A, and vitamin
C. This deficiency causes nutritional disorders like anemia,
osteoporosis, night blindness and scurvy, respectively (Agarwal
et al., 2015; Debenoist et al., 2008; Fao, 2015; Heaney, 2000).
For instance, deficiency of Zinc (Zn) was linked with stunting
and hypogonadism (A.S. Prasad, 2013), while deficiency of
Selenium (Se) was related to the problems of weak joints
in humans (Sunde et al., 2010). Though numerous dietary
supplements are obtainable to encounter these deficiencies,
unfortunately, they are only accessible to rich people, and
common people are usually away from these due to poverty in
most countries (USNIH, 2017; Walker, 2014). Subsequently,
in such countries, agronomic biofortification using chemical
fertilizers is the most common approach economically friendly
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method, and they usually tend to neglect the ecological aspects
of this (Valença et al., 2017).

The agronomic biofortification through chemical-based
fertilizers was found reasonably practical and well established in
the case of many crops worldwide (Smil, 2002). For instance,
in India, Tandon (1994) reported the upsurge in rice harvest
due to nitrogen supply was 27–28%, for wheat, it was 59%, in
sorghum it was 68%, while for maize, it was 64% and 58% in
case of pearl millet (Manwaring et al., 2016) . Likewise, Stewart
et al. (2005) performed many field trials in the USA, and
certain other nations reported that lack of nitrogen fertilizers
caused a 41%, 27% and 16% reduction in the overall yield of
maize, rice and wheat, respectively. Later, Erisman et al. (2008)
also emphasized the finding of ammonia synthesis and its use
in nitrogenous fertilizers. They also emphasized that almost
50% of the world populace would have suffered starvation
without this. Whereas Synder et al. (2009) also mentioned the
importance of nitrogen fertilizers for food availability to almost
40% of the world’s population. According to Tillman et al.
(2011), it is expected that to encounter the food scarcity for
growing populace from 2005 to 2050, worldwide the farmers
will have to harvest equally surplus food yearly as it happened in
the last 2000 years. He estimated that about 250 million tons of
nitrogen fertilizer will be needed yearly by 2050, i.e. more than
the two fold consumed in 2005 (R. Prasad & Shivay, 2020).

4. SIGNIFICANT ISSUES IN THE NUTRITIONAL STATUS OF
FOOD CROPS

The significant issues in the nutritional status of food crops
generally include vitamin and mineral deficiencies. To address
these issues related to malnutrition, Biofortification has been
used to lessen the deficiencies of vitamins like pro-vitamin A,
carotenoid, minerals deficiency like Zn, Fe, Se, etc. in many
crops, viz., beans, cowpea, pearl millet, maize, rice, wheat,
cassava, and sweet potato (Grusak & Penna, 1999; Miret &
Munné-Bosch, 2014).

Apart from augmentation of vitamins and nutrients for a
better nutritional profile, the other aspects of Biofortification
include the easier bioavailability of micronutrients (Bouis &
Welch, 2010), retention of nutrients and vitamins in cooked,
processed and stored foods (Amarakoon et al., 2012; Hirschi,
2009) in comparison of non-biofortified foods. The primary
aim is to provide biofortified staple crops that can improve
micronutrient intake to those populaces where the diet is limited
in any of the micronutrients/vitamins.

5. PROGRESS IN ATTAINING BIOFORTIFIED CROPS

Several attempts have been made in this direction considering
the importance of proper nutrition. The obtained results
are encouraging for iron-biofortified crops worldwide. The
outstanding examples are (1) the Philippines, the moderately
biofortified rice for Fe has upgraded the iron rations in
reproductive-age women (Cao et al., 2019); (2) India, iron-
biofortification was done in pearl millet which has augmented
the iron level in children (Santos et al., 2017) and (3) Rwanda

the iron-biofortified beans have upgraded the iron levels in the
local women inhabitants (Kumar et al., 2019).

Regarding deficiency of vitamin, A evidence is available that
orange-coloured sweet potatoes with pro-vitamin A biofortifica-
tion lessens the vitamin A deficit children of especially in African
nations (Kondwakwenda et al., 2018; Singh et al., 2013), while
in Bangladesh, an attempt displayed augmented pro-vitamin A
concentration without any improvement in the status of vitamin
A as an exception (Lucca et al., 2006). However, an attempt
with pro-vitamin A biofortified yellow cassava had shown an
upsurge in vitamin A grade and a better augmentation in pro-
vitamin A content in school children of Kenya (Talsma et al.,
2016).

6. PRINCIPLE APPROACHES FOR BIOFORTIFICATION

In the recent past, supplementation of food remained
the principal approach utilized for nutrition and vitamins
fortification. However, this approach has some feebleness,
together with the reduced bioavailability of some of the
micronutrients after food release. Hence, biofortification
has been taken into consideration as a prospect to provide
executable program via (a) The agronomic tactic, (b) traditional
plant breeding, and (c) gene engineering (Hirschi, 2009; White
& Broadley, 2009).

6.1. Uptake and bioaccumulaƟon of nutrients through vegetaƟon

The plant species are usually capable of uptake, accumulate
and translocate the minerals through their clear compartmen-
talization. However, these activities of plants also depend upon
the ambient environmental and internal crosstalk amid various
types of nutrients (Fageria, 2006; Rossi et al., 2004). For
instance, Fe is a crucial nutrient both at micro and macro
levels for the plant’s metabolic process, overall progress, and
growth (Briat et al., 1995). Fe may be absorbed through the
roots in its Fe2+ form, subsequently oxidized to Fe3+, then
chelated through citrate, followed by its transport to the highest
aerial point of the plant (Brown, 1978). Likewise, Zn is also
a crucial mineral nutrient for plant progression and growth,
which gathers ideally within the vacuoles of the epidermis of the
leaf in the form of electron-dense forms (Vazquez et al., 1992,
1994).

Nonetheless, most of the staple crops have shown deficiency
of minerals (Fe and Zn mainly) and vitamins A. Therefore, the
local consumers have no option, and as a result, they remain
deficient in metabolically essential components. Subsequently,
many attempts were made through several tactics, and some of
them were readily accepted, and the consumers did not accept
some due to various concerns.

6.2. Use of FerƟlizers for BioforƟficaƟon

Earlier the use of fertilizers was considered appropriate
to argue the nutritional status of many crops. However,
in the recent past, the use of nitrogen fertilizers has been
criticized by environmentalists. It is proved that nitrogen
fertiliser use is accountable for environmental deprivation
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comprising (a). Release of N2O accountable for the problem
of global warming (Kroeze, 1994), (b). Ozone layer lessen-
ing (Ravishankara et al., 2009), (c). Nitrate accumulation
of land and oceans (Caraco & Cole, 1999) resulting in algal
blossoming, which is blamable for faunal death (Julio et al.,
2005; Synder, 2008); and (d). Nitrate augmentation of
surrounding groundwater is responsible for the blue baby
syndrome (methemoglobinemia) (S.K. Gupta et al., 2000;
Knobeloch et al., 2000; Lorna, 2004).

In recent times, phosphate fertilizers are also doubted
for eutrophication of water bodies causing the “red tides”
and associated with mortality of aquatic animals includ-
ing (Williams, 2018).Such extraordinary rates of fertilizer use in
many countries are alarming because their governments provide
support to the manures manufacturing units to manufacture,
carriage, storage and dissemination (Liu et al., 2014). Doering
et al. (2018) considered China a best-case regarding the
problematic strategy of excessive nitrogen fertilizers. The surplus
use of fertilizers in many countries have brought a setback to the
fertilizers.

A different setback to fertilizer’s application has emerged
from the awareness of organic food; consequently, many veg-
etables and fruits now prefer to be grown with organic manures
devoid of chemical fertilizers according to the recommendations
for organic production of fruits and vegetables (Coleman,
2012). Though the healthiness claims regarding organic foods
are debatable (Baranski et al., 2017; Joel & Janet, 2012; Paull,
2011), they are preferred in developed countries. Hence, there is
a need for a critical inspection of the consequence of manures on
the overall potentials of plant-based food with a distinct focus on
vitamins, minerals and other secondary metabolites beneficial
to the healthiness of consumers. Concerning that the overall
productivity of organic crops will make unable to match up
with the production of crops supported with chemical fertilizers,
it is presumable that it would not be readily available to the
developing countries at an affordable price shortly (R. Prasad,
2005).

Through the characterization, these chemical nourishments
are either naturally occurring or manufactured substances
that hoard more than one indispensable nutrient. Also,
the word is regularly used at large N, P, and K as the
primary plant nutrients. However, resources that hoard
secondary (Ca, S, Mg) and micro-nutrients (Fe, Zn, Mn,
B, Cu, Mo, V, Cl, Ni, Se) have also come in the category
of fertilizers. They have got pronounced consideration due
to extensive insufficiencies of Sulfur Tandon (1994) and
other micronutrients in soil (Alloway, 2008), which leads to
complications in human well-being (Ritchie & Roser, 2019).
Calcium is usually supplementary as a soil improvement as
CaCO3, especially on acid soils (Nwachuku & Loganathan,
1991; R. Prasad & Power, 1997) or as CaSO4(gypsum) on
alkaline soils (Abrol et al., 1988) for getting soils near-neutral
pH. For instance, Ca used as a fertilizer is used for groundnut
(Arachis hypogea) at the hanging phase to meet the requirements
of emergent pods (Radder & Biradar, 1973).

Likewise, the application of Sulphur (S) has now been
considered compulsory in several soils because of the enhanced
use of urea and NH4NO3 instead of NH4)2SO4 and mono-
and di-ammonium phosphate rather than usual superphosphate
(Tandon, 2011). Zn shortage is prevalent (Alloway, 2008),
and Fe insufficiencies are now problematic in many parts of the
globe (Lucena & Hernandez-Apaolaza, 2017). The ingredients
in a food product that have been acknowledged chiefly from the
point of view of human nourishment comprise carbohydrate,
protein and fat, which are recognized as macronutrients
essential for an ideal human diet (Prentice, 2005), and most
researches on consequences of manures refer to the quantity
and yield of these essential macronutrients. Likewise, several
nutritionists have acknowledged most vitamins as essential in
this direction (Combs, 2007). Though, minerals are just
described as residue and have not got appropriate consideration
formerly. However, recently, the significance of minerals in
human wellbeing has been acknowledged (Fortmann et al.,
2013; R. Prasad & Shivay, 2020). From the perspective of
the consequences of fertilizer on plant-based food composition
concerning vitamins and minerals, their insufficiencies are most
imperative and are accepted universally. Fertilizers use can also
impact other plant food ingredients, which cause issues related
to human health comprising sulfur-containing amino acids
(SAAS), alliin and nitrates. Moreover, calcium insufficiencies
leading to diseases like osteoporosis that the liming procedure
can somewhat manage in acid soils.

6.3. The use of transgenic plants in mineral bioforƟficaƟon

Biofortification of plants with the help of contemporary
cutting-edge biotechnology strategies has been explored in
the recent past. Transgenic staple crops with the elevated
buildup of critical minerals, viz., Fe, Zn, and Ca within
the consumable/palatable tissue, have been created and tested
with appreciable success. Concurrently, transgenic plants with
decreased concentrations of anti-nutrients have been developed
or under trial. For instance, a plant with reduced phytate
content has been established to increase the bioavailability of
essential minerals by avoiding the interference of phytate in their
absorption through the gut (White & Broadley, 2009).

6.3.1 BioforƟfied Transgenic crops for Fe and Zn

Rice (Oryza sativa) is a well-researched cereal crop for
nutrients biofortification. It is an indispensable crop for the
massive fraction of the world’s deprived populace, and invariably
it is undersupplied in numerous vital micronutrients. Keeping
this in view, transgenic rice has delivered a typical system to
augment the level of bio-available Fe and Zn in the endosperm
(seed). Researchers have revealed that the metal transporter
proteins in various crop species can be utilized for several metal
substrates, comprising Fe, Zn, and Cd. These metallic substrates
can be taken up from the substrate through the root zone. It was
instituted that forfeiture of these transporter proteins’ function
mutants resulted in uptake failure of the essential metals into
the plant cells (Morrissey & Guerinot, 2009). Researchers have
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Table 1
Some biofortified commonly used vegetable crops. (Chilimba et
al., 2012; Dayod et al., 2010; Narayanan et al., 2015)
Element Crop Usual Con-

centration
(mg kg−1

FW)

Typical Increase The dose
applied to
leaves or
roots (mg
L−1 )

Min Max Min Max
Ca Potato 144 245 0.7-fold 350 5200
Mg Onion 652 1627 1.5-fold 0 150
I Cabbage 0.1 2.5 34.4-fold 0.1 0.6
I Cowpea 4 1566 >100-fold 0.7 15
I Mustard 0 0.4 41-fold 0.7 1.1
Zn Lettuce 2.2 30.4 12.8-fold 5.2 60
Se Cucumber 0 0.2 7.6-fold 0 30
Se Tomato 0.3 3.4 9.1-fold 5 20
Fe Lettuce 2.3 4.3 0.9-fold 0.8 112
Fe Sweet potato 185 253 0.4-fold 0 100
Cu Spinach 0.5 3.0 4.5-fold 0 3
Si Basil 41.2 293 6.1-fold 0 100

increased Fe and Zn buildup by increased iron uptake and its
subsequent transport utilizing mugineic acid (the ferric iron
chelator) (Masuda et al., 2013).

Similarly, transgenic crops were created and expressed the
ferritin gene (SoyferH2) from Glycine max (soybean). These
are compelled by the two promoters, which were endosperm-
specific, also to the nicotianamine synthase gene (HvNAS1),
two nicotianamine- aminotransferase genes (HvNAAT-A and
HvNAAT-B), along with a mugineic acid synthase gene (IDS3)
of barley were utilized to upsurge mugineic acid creation in
transgenic rice. The engineered plants were found forbearing of
iron-less topsoil and showed augmented iron buildup by almost
2.5-fold. Under the iron-rich circumstances, these transgenic
rice lines augmented iron buildup by 4-fold, almost similar to
those lines that had been nurtured in either commercially used
refined soil (iron-sufficient conditions) or calcareous soil (iron-
shortage circumstances).

Transgenic plants having biosynthetic genes expressing
ferritin and mugineic acid both displayed tolerance against
the usual Fe-deficiency in calcium-rich soil, and the Fe
content in the polished generation of seeds (T3), and this
augmentation was around 4 and 2.5 times, respectively, related
to the non-transgenic plants grown in regular and calcium-rich
soil (Hefferon, 2020).

In continuance with these attempts, Li et al. (2019) have
recognized a Zn transporter protein family (ZIP) to accept
divalent cation in crops. They revealed that ZmZIP5 protein
overexpression consequently augmented Fe and Zn levels in
seeds (endosperms) of rice.

Likewise, Beasley et al. (2019) performed constitutive
expression of the nicotianamine synthase 2 (OsNAS2) gene of
Oryza sativa in Triticum aestivem. The modification resulted in
the up-regulation of nicotianamine (NA) and 2′-deoxymugineic
acid (DMA), imperative for Fe and Zn transport. As a result, the

transgenic bread wheat hoarded higher concentrations of Fe and
Zn in endosperm and bioavailability of Fe was also augmented
in transgenic from field-grown CE-OsNAS2 grain.

In another attempt, R. Sharma and Yeh (2020) used a mutant
for ethyl methanesulfonate (EMS) in Arabidopsis, adapted
to iron-poor soil and confirmed the buildup of 4–7 times
higher iron content than the wild-type counterparts in the
root, shoot, and seeds. This mutant offered an overriding
phenotype, “Metina”, which triggers the Fe controlling way
by enhancing Fe homeostasis constitutively, and thus may be
worthwhile in the direction of Fe biofortification. In the same
way, Qiao et al. (2019) established that the gene of wheat
encrypting the cell number regulator (CNR) protein displayed
superior forbearance to Zn and overexpression of TaCNR5 in
Arabidopsis increased translocation of Zn, Cd, and Mn from
root to shoot. This specifies that heavy metal forbearance
features can be used as a tool for the biofortification of
important cereal grains with desirable micronutrients (Table1).

Since a similar molecular mechanism is operated for
transferring Fe and Zn into plants, augmenting Fe level in rice
also facilitates augmented Zn buildup. For instance, Aung et
al. (2013) created a common rice transgenic line, especially
in Myanmar, where around 70% of the population is iron-
poor regarding their nourishment. This line was capable of
over-expressing the nicotianamine synthase gene (HvNAS1) to
improve iron transport, the Fe(II)-nicotianamine transporter
gene (OsYSL2) to transfer Fe to the endosperm and the Fe
storage protein gene (SoyferH2) to upsurge iron buildup in the
endosperm of the seeds. These rice plants displayed enhanced
accumulation of over 3.4-fold higher concentrations of Fe;
furthermore, about 1.3-fold higher Zn concentrations were also
reported compared to traditional, non-transgenic rice lines. The
obtained results were beneficial to address the deficiency of these
two micronutrients for the populace of Myanmar.
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Paul et al. (2014) created transgenic better performing Indica
rice in which the soybean-origin ferritin gene was expressed.
Even in the fourth generation, the resultant transgenic rice
yielded more than 2.6-fold elevated levels of ferritin than the
non-transgenic equivalents. When milled, the transgenic grains
delivered about 2.50-fold and 1.50-fold proliferations in Fe and
Zn content, separately. Likewise, the iron transporter gene
(MxIRT1) attained from apple was used by Tan et al. (2018)
to produce transgenic rice plants that showed an upsurge in Fe
and Zn of 3-fold, as well as a decrease in Cd concentration,
was also observed. Cd is supposed to contest with Fe and
Zn for transportation and buildup in the rice endosperm and,
therefore, lower levels of Cd can reduce the harmfulness in the
seed.

Other methods have also done enhancements in Fe and
Zn biofortification. For instance, Trijatmiko et al. (2016)
established that plants were containing soybean ferritin (SferH-
1) and rice nicotianamine synthase (OsNAS2) genes infatuated
augmented content of Fe and Zn in the endosperm. A Caco-
2 cellular assay showed that transgenic rice’s augmented Fe and
Zn content was bio-available at a good strength. Transgenic
plants created by Banakar et al. (2017) showed elevated levels
of nicotianamine and 2′-deoxymugenic acid (DMA) and were
capable of accruing up about 4-fold more Fe and 2-fold more Zn
endosperm, with lower levels of Cd compared to their wild-type
rice plants.

Besides the members of the family Poaceae, other important
members of the family Fabaceae have also been studied for
Fe and Zn biofortification using transgenic approaches. In
one such attempt, Tan et al. (2018) upgraded Fe levels in
Cicer arietinum L. (chickpea) by enhancing iron transport
and accumulation by creating a merger of Cicer arietinum
nicotianamine synthase 2 (CaNAS2) and Glycine max ferritin
(GmFER) genes. Transgenic plants of Cicer arietinum over-
expressed these genes, demonstrated a 2-fold increase in Na
concentration, signifying an upsurge in Fe bioavailability (Table
1).

6.3.2 Calcium-bioforƟfied transgenic plants

The calcium level of crops has also been augmented through
transgenic approaches. The developments pivot on upgraded
information of how the soluble form of calcium ions existed
in the loam are conveyed and hoard in various tissues of
plant (Doyad et al., 2010). Ca performs a meaningful role
in overall cell signalling and can affect the dietary status of
animals and human beings. Park et al. (2009) have produced
transgenic plants, viz., potato, tomato, carrots, and lettuce
expressing elevated levels of Ca transporters. There is a
short cation exchanger (sCAX1) among the Ca transporters,
which can escalate Ca transport into the vacuoles of the plant
cell (Connolly, 2008). Improved Ca absorption was already
confirmed in animal models that were fed on transgenic plants.

Likewise, researchers have observed that the usually neglected
finger millet would be a good candidate in biofortification as it
has high calcium content through the knowledge of strategies

behind Ca uptake, its transportation, and finally, the buildup
in grain. It was stated that change in the environment might
adversely affect mineral buildup in diverse plants; this could
minimize their further ease of access from food crops to both
human beings and animals (Martínez-Ballesta et al., 2010).

7. VITAMINS BIOACCUMULATION IN CROPS

Some vitamins, viz., folic acid and β-carotene, are vital
for everyday health. The progress of microbial biochemistry
enabled better knowledge of the biosynthetic pathways responsi-
ble for vitamin production in plant species. Plants manufacture
almost all vitamins essential in the diet with the exemption of
vitamin C (ascorbic acid), which is precisely manufactured by
cells (Ishikawa et al., 2006; Miret & Munné-Bosch, 2014; Smith
et al., 2007). Invariably the biosynthesis is compartmentalized
inside different organelles. Due to the better understanding of
the metabolism in vitamin production, many transgenic plants
can be generated with the elevated buildup of essential vitamins.

7.1. Transgenic bioforƟficaƟon strategies for vitamins buildup

Transgenic technology has a prospective to lessen the
global affliction of under-nourishment and unseen starvation.
Vitamin-or mineral-enriched transgenic biofortified food prod-
ucts are supposed to be the successive cohort of transgenic
foods. Non-transgenic biofortified foods have been generally
developed and sell at markets; however, the practical conser-
vative breeding techniques may be insufficient for crops with
a truncated level or devoid of definite micronutrients (Beyer,
2010).

8. BIOFORTIFICATION AND PHYTOREMEDIATION

In contemporary agricultural practices, the eventual objec-
tive is to produce wholesome and harmless foodstuff in sufficient
amounts with a sustainable environment. By incorporating
conventional and modern strategies, appreciable success has
been achieved in the augmentation of crop yields; however, an
increase in the mineral contents has become imperative since
a large portion of the global population is in the misery of
malnutrition in this regard. Biofortification of many trace
minerals can be attained through composting, crop breeding
and/or agricultural biotechnology. Conversely, soils polluted
with metals/ metalloids possibly cleaned up using phytore-
medial approaches, viz., phytoextraction that unites hyper-
accumulation with high biomass manufacture (P.K. Gupta et
al., 2021). However, several advancements have been made
in recognizing the inter-specific and intra-specific deviations
in the buildup of trace elements and mechanistic perceptive
regarding the cellular transportation of these trace nutrients and
subsequent homeostasis in plants. However, the applicability of
Phytoremediation in biofortification remains to be explained.
Hence this particular area is a credible prospect to be explored.
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9. BEHAVIORAL CONCERNS ASSOCIATED WITH
BIOFORTIFICATION

There are two main behavioral concerns associated with
biofortification at the farmers and consumers’ levels, respec-
tively. On the one hand, the farmers are concerned about
planting those varieties with superior agronomical traits than
the current varieties of their preferred crops, viz., varieties
tolerant to drought and other common diseases (Fan, 2016).
Invariably, farmers neglect the crops having upgraded concen-
tration of micronutrients if they have any vigorously growing
varieties (A. Sharma & Verma, 2019). Therefore, biofortified
varieties must have other traits of interest and high mineral
contents to win the preference of the local farmers.

Likewise, biofortified crops usually exhibit different col-
oration in comparison to the usual crops, which possesses
a hindrance at consumer’s end, for instance, Pro-vitamin A
carotenoid gives distinct color to foods; therefore, motivation of
consumers to revolutionized their purchasing and consumption
habits from white- to orange-fleshed foods, viz., cassava, maize,
sweet potato, etc. (Ye et al., 2000). Apart from the color in
few crops, the taste of foods is also pretentious due to the
improved concentration of pro-vitamin A, hence not preferred.
Therefore, general acceptability has to be promoted through
beneficial information related to the health of the food/food
products (Shwetha et al., 2020).

10. DISCUSSION

With increasing populations, especially in developing and
under-developed countries, the scarcity of food crops and
malnutrition exist simultaneously. The hardly available food to
them can fulfil their daily diet, but it is evident that the majority
of such populace is facing hidden hunger as they are not getting
nutritious food and are prone to various infectious entities.
Since the understanding of this hidden hunger, researchers have
started to counter this challenge initially by using chemical
fertilizers and afterwards through transgenic biofortified crops.
Later on, organic farming also seems to be a possible approach in
this direction. All three possible methods have their benefits and
drawbacks that have been discussed in the recent past. However,
keeping all the points along with the major problem of hidden
malnutrition, there is an acute need to encourage the use of
transgenic biofortified crops so that desirable nourishment can
be delivered to the needy populace globally.

Though the deficiency of nutrients like Fe, Zn, and pro-
vitamin A is prevalent in the developing world, staple crops
like rice, wheat, and few lentils are consequently majorly
transformed. Nevertheless, many other micronutrients exist
scarcely in other food crops and there is a need to create
transgenic vegetables to provide better nourishment to the
populace than the existing non-transformed forms.

Now the time has come to solve the ethical, social, and
environmental concerns regarding transgenic biofortified crops’
safe and economical use. Phytoremediation should also be a
consideration for the sustainability of the environment during

the use of various fortification approaches. Likewise, technology
transfer is another issue that must be sorted out among the
developed and developing world, considering humanity and
moral background.

11. CONCLUSION

Agronomic and transgenic biofortification of food crops
can be used to increase human nutrition for needy populaces.
There are few practical approaches by which biofortification
can be done. The conventional approach seems well enough
in this direction if we neglect the environmental concerns.
Organic farming is another way to get biofortified crops, but
it also has the issue of high cost therefore hard to attain
for the poor but needy people. The transgenic approach
is a perfect answer to all the environmental concerns, but
it also has few limitations, like several ethical concerns and
availability in the developing world. However, the existing
situation presents signs of changes with the agreement on the
‘Golden Rice’ in many nations. Also, the applicability of
phytoremediation and biofortification has to be evaluated for
a sustainable environment for better used in the future. It
is expected that other transgenic biofortified food crops will
quickly get authorization from various regulatory bodies, and
therefore support to lessen malnutrition or hidden hunger
worldwide. Therefore, governments of different countries must
form a policy in which all the issues can be settled by mutual
consent and the hidden hunger can be eliminated from this
planet.
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